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Abstract. Our aim is to investigate the flow and heat transfer between a heated viscous incompressible ferrofluid and a wall
in the presence of a spatially varying field. Similarity transformation is applied to convert the governing nonlinear boundary-
layer equations into coupled nonlinear ordinary differential equations. These equations are numerically solved using a commercial
software. The effects of governing parameters corresponding to miscellaneous physical conditions are analyzed. Numerical results
are represented for distributions of velocity and temperature, further more are obtained for the dimensionless wall skin friction and
heat-transfer coefficients. In special case, two bifurcate solutions have been achieved and one of the two solutions compares well
with previous studies.

INTRODUCTION

In the recent decades, nanofluids are intensively investigated by various researchers due to their wide applicability in
industry. These suspensions are prepared with various metals or non-metals and the base fluid. Ferrofluids are stable
colloidal suspensions of non-magnetic carrier liquid containing very fine magnetized particles(see [1]). Nanofluids
can be used in technological processes e.g., in heat exchanger, vehicle cooling, nuclear reactor, cooling of electronic
devices.

When magnetizable materials are subjected to an external magnetizing field H, the magnetic dipoles or line
currents in the material will align and create a magnetization M.

Problem of magnetohydrodynamic (MHD) flow near infinite plate has been studied intensively by a number of
researchers (see, e.g., [2], [3], [4], [5]). In recent years Neuringer and Rosensweig [6] developed a model, where the
effect of magnetic body force was considered under the assumption that the magnetization vector M is parallel to the
magnetic field vector H.

Andersson [2] extended the so-called Crane’s problem by studying the influence of the magnetic field, due to a
magnetic dipole, on a shear driven motion, on a flow over a stretching sheet of a viscous non-conducting ferrofluid. It
has been shown that the effect of the magnetic field is a slowing of the fluid movement compared to the hydrodynamic
case. Neuringer [7] has examined numerically the dynamic response of ferrofluids to the application of non-uniform
magnetic fields with studying the effect of magnetic field on two cases, the two-dimensional stagnation point flow of
a heated ferrofluid against a cold wall and the two-dimensional parallel flow of a heated ferrofluid along a wall with
linearly decreasing surface temperature.

Our goal is to re-investigate the two-dimensional parallel flow of a heated ferrofluid along a wall with varying
surface temperature of power-law type and the behaviour of ferrofluids in magnetic field using similarity analysis. The
similarity method is applied for the governing equations to transform partial differential equations to nonlinear ordi-
nary differential equations. Numerical solutions are obtained with higher derivative method. The heat transfer, velocity
and temperature distribution in the boundary layer are provided. The behaviour of the velocity and thermal distribution
is presented. The effects of the parameters involved in the boundary value problem are graphically illustrated.
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Mathematical formulation

Consider a steady two-dimensional flow of an incompressible, viscous and electrically non-conducting ferromagnetic
fluid over a flat sheet in the horizontal direction.

The dipole of the magnet is placed at a distance a from the surface, in such a way its center lies on y-axis. The
magnetic field (H) due to the magnetic dipole is directed towards positive x-direction. The ferrofluid influences by the
dipole of the permanent magnet whose scalar potential is

φ(x, y) = − I0

2π

(
tan−1 y + a

x
+ tan−1 y − a

x

)
, (1)

where I0 denotes the dipole moment per unit length and a is the distance of the line current from the leading edge.
The wall temperature is a decreasing function of x and is given by Tw = Tc + Axm+1, where Tc denotes the Curie
temperature, A and m are real constants.

The negative gradient of the magnetic scalar potential φ equals to the applied magnetic field, i.e. H = − ∇φ.
In paper [6] it was showed that the existence of spatially varying fields is required in ferrohydrodynamic inter-

actions. We shall have the following assumptions for the exposition of ferrohydrodynamic interaction, that the fluid
temperature must be less than Curie temperature, and the applied magnetic field is inhomogeneous.

Then, the dynamic response of ferrofluids to the application of non-uniform magnetic fields follows from the
fact that the force per unit volume on a piece of magnetized material of magnetization M (i.e. dipole moment per unit

volume) in the field of magnetic intensity H is given by the form μ0M∇H, where H =
√(
∂φ
∂x

)2
+
(
∂φ
∂y

)2
, μ0 denotes the

free space permeability and M represents the magnitude of M. Since (∂φ/∂x)y=0 = 0 and
(
∂2φ/∂y2

)
y=0
= 0 at the wall,

then [∇H]y vanishes.
In the boundary layer for regions close to the wall when distances from the leading edge large compared to the

distances of the line sources from the plate, i.e. x � a, then one gets

[∇H]x = − I0

π

1

x2
. (2)

From the above said consideration of the flow analysis, the governing equations (conservation of mass, mo-
mentum and energy) of the boundary layer flow are formed according to the assumptions of [7] and the variation of
magnetization M is the linear function of temperature as reported by M = K(Tc − T ), where K is the pyromagnetic
coefficient and Tc denotes the Curie temperature proposed by [8].

Then, the governing equations are described as follows

∂u
∂x
+
∂v
∂y
= 0, (3)

u
∂u
∂x
+ v
∂u
∂y
= − Ioμ0K

πρ
(Tc − T )

1

x2
+ ν
∂2u
∂y2
, (4)

c
[
u
∂T
∂x
+ v
∂T
∂y

]
= k
∂2T
∂y2
, (5)

where the x and y axes are taken parallel and perpendicular to the plate, u and v are the parallel and normal velocity
components to the plate, respectively, μ0 means the permeability of the vacuum, c is the thermal heat capacity, k is
the thermal conductivity, ν is the kinematic viscosity and ρ denotes the density of the ambient fluid, which will be
assumed constant. Equations (3)-(5) are considered under the boundary conditions at the surface (y = 0) with

u(x, 0) = 0, v(x, 0) = 0, T (x, 0) = Tw, (6)

where Tw = Tc + Axm+1 and as y leaves the boundary layer (y→ ∞) with

u(x, y)→ u∞, T (x, y)→ T∞ (7)

where T∞ = Tc, and u∞ is the exterior streaming speed which is assumed throughout the paper to be u∞ = U∞xm

(U∞ = const.). Parameter m is relating to the power law exponent. The parameter m = 0 refers to a linear temperature
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profile and constant exterior streaming speed. In case of m = 1, the temperature profile is quadratic and the streaming
speed is linear. The value of m = −1 corresponds to no temperature variation on the surface.

Introducing the stream function ψ and using the following transformations, the structure of (4)–(7) allows us to
look for similarity solutions of a class of solutions ψ and T in the form (see [9])

ψ(x, y) = C1xb f (η), T = Tc + Axm+1Θ (η) , η = C2xdy, (8)

where b and d satisfy the scaling relation b + d = m and for positive coefficients C1 and C2 the relation C1/C2 = ν
are fulfilled. The real numbers b, d are such that b − d = 1 and C1C2 = U∞, i.e. b = (m + 1)/2, d =
(m − 1)/2, C1 =

√
νU∞, C2 =

√
U∞/ν.

By taking into account (8), equations (4) and (5) and conditions (6) and (7) lead to the following system of
coupled ordinary differential equations

d3 f
dη3
− m
(

d f
dη

)2
+

m + 1

2
f

d f
dη
− β Θ = 0, (9)

d2Θ

dη2
+ (m + 1) Pr

(
1

2
f

dΘ
dη
− Θ d f

dη

)
= 0. (10)

The boundary conditions reduces to the following equations subjected to the boundary conditions

f (0) = 0,
d
dη

f (0) = λ, Θ(0) = 1, (11)

d
dη

f (η) = 1, Θ(η) = 0 as η→ ∞, (12)

where Pr = cν/k is the Prandtl number and β = I0μ0KA/(πρU2∞) is the ferromagnetic parameter.
The components of the non-dimensional velocity v = (u, v, 0) can be expressed by

u = U∞ xm d f (η)

dη
, (13)

v = −√νU∞ x(m−1)/2

(
m + 1

2
f (η) +

m − 1

2

d f (η)

dη
η

)
. (14)

The physical quantities that specify the surface drag and heat transfer rate can be derived. Mathematically these
quantities are interpreted in the following form

τy=0 = νρ

(
∂u
∂y

)
y=0

= ρU∞
√
νU∞ x

3m−1
2

d2

dη2
f (0), (15)

−k
(
∂T
∂y

)
y=0

= −kA

√
U∞
ν

x
3m+1

2
d
dη
Θ(0), (16)

where (d2 f /dη2)(0) denotes the skin friction coefficient and (dΘ/dη)(0) stands for the heat transfer coefficient.

Numerical Results

The system of equations (9)–(10) with the corresponding conditions (11)–(12), is interpreted numerically using BVP
solution technique built in Maple. During our investigations, the velocity and temperature changes in the boundary
layer are examined and the effects of the parameters on the solution are illustrated on the figures.

The boundary value problems can have the situation that either no solution or multiple solutions exist even for
the simple set of differential equations (see [10] and [11]). The Prandtl number Pr = 10 is fixed as a typical value of
kerosine based ferrofluid. The obtained solutions of velocity and thermal distribution can be seen on Figs. 1-2. The
ferromagnetic parameter β highlights the effect of the external magnetic field. The variation of λ is shown on Figs.
1-2. It is can also be noticed that the boundary layer thickness is different for different values of β and parameter m.
The thermal boundary-layer thickness is smaller than the corresponding velocity boundary-layer thickness.
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Conclusions

This paper presents similarity solution of the boundary layer flow and heat transfer over a cold wall of a ferrofluid flow
in the presence of spatially varying magnetic field. By means of similarity transformation, the governing mathematical
equations are reduced into ordinary differential equations which are then solved numerically using BVP solution
technique. The effects of some governing parameters namely ferromagnetic parameter β, Prandtl number and power
law parameter on the flow, and heat transfer characteristics are graphically presented and discussed.
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FIGURE 1. The velocity distribution FIGURE 2. The temperature distribution
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